Термический крекинг установка, схема, реакции — ПроНПЗ

Крекинг (нефти, метана, бутана) — что это

То, что большинство автомобилей ездят на бензине, знают все. Но при этом только единицы, даже среди владельцев машин, представляют, откуда берется это топливо. Ну, максимум скажут, что из нефти. А между тем, это целый процесс превращения углеводородов в бензин и другие продукты. И называется он крекинг.

Что представляет собой крекинг нефти

Само слово имеет английские корни и дословно переводится как «расщепление». В результате переработки нефти удается получить различные продукты, у которых более низкая молекулярная масса. Это, например, бензин, смазочное масло и другие, а также сырье для химической промышленности.

А если мы говорим про крекинг алканов, то есть насыщенных углеводородов, то в результате обработки получаются нефтяной кокс и так называемый крекинг-остаток – небольшие фракции, которые закипают при очень высокой температуре (свыше 350 градусов).

Крекинг нефтепродуктов – история создания

История крекинга начинается в 1891 году. И корни его лежат в нашей стране, так как изобрели первую в мире установку для обработки нефти ученые В.Шухов и С.Гаврилов. Это была абсолютно экспериментальная модель, которая не использовалась в промышленных масштабах, но при этом была запатентована.

А вот довел ее «до ума» английский химик Дерек Бартон в начале XX века. Он придумал, как сделать так, чтобы в результате крекинга получалось как можно больше топлива. А частности он научился превращать мазут в керосин. В 1916 году он запатентовал свое изобретение, а всего лишь 4 года спустя установки Бартона работали на сотнях предприятий.

Виды крекинга

Расщепление нефти бывает двух основных видов – термический и каталитический крекинг. В первом случае весь процесс протекает только за счет увеличения температуры. А вот во втором, помимо нагревания, используются еще специальные реагенты – катализаторы.

Но в нефтеперерабатывающей промышленности иногда применяют и другие методы. Например, электрический крекинг. В этом случае метан пропускается через электрическую среду, и в результате на выходе получается ацетилен. А бывает, что в процесс расщепления нефти добавляют кислород. И такой способ носит название окислительного крекинга.

Каталитический крекинг

Считается, что этот вид обработки является самым главным в нефтяной отрасли. А все потому, что каталитический крекинг позволяет получить более качественную переработку сырья. Например, с помощью данного расщепления получают высокооктановый бензин.

Интересно, что установка для подобной переработки была изобретена еще в 30-е годы прошлого века. И почти сразу метод показал превосходство над остальными. В первую очередь, оказалось, что применение катализаторов легко совмещается с другими процессами – алкированием, гидроочисткой, деасфальтизацией и другими. Благодаря этой универсальности большинство современных нефтеперерабатывающих предприятий используют только каталитический способ.

Каталитический крекинг нефти – сырье

В качестве исходного материала для данного вид крекинга могут использоваться различные материалы. Это керосиновые дистилляты, дистилляты от гудронов и мазута, тяжелые дистилляты от прямой перегонки нефти, керосино-газойлевые фракции и полупродукты масляного производства.

Но для удобства все сырье специалисты делят по температуре, при которой происходит обработка:

  • легкое сырье – перегонка при 200-360 градусах;
  • тяжелое сырье – 350-500 градусов;
  • сырье с широким фракционным составом – крекинг начинается при 200 градусах, а в конце кипение доводят до 500 градусов;

Для получения автомобильного топлива применяют сырье второго или третьего типа. А вот первый для производства бензина использовать нерационально, так как во время кипения исходный материал видоизменяется незначительно. И в результате получается топливо с низким октановым числом.

Катализаторы каталитического крекинга

Для данного вида крекинга используются следующие катализаторы:

  • HH-MDO – содержит большой объем цеолита и редкоземельного элемента, плюс большая площадь поверхности. Является лучшим на сегодняшний день для получения бензина;
  • HH-ELO – в качестве сырья используется тяжелый гудрон и вакуумный газойль, значительно повышает выход таких продуктов как изобутилен и пропен;
  • HH-1 – отличается высокой устойчивостью к отравлению тяжелыми металлами и активностью, повышает количество получаемого пропена;
  • HH-101 – также имеет хорошие характеристики по устойчивости к загрязнению металлами и повышенной активностью, используется чаще всего для крекинга мазута, повышает выход низко-углеродного алкена и уменьшает выход кокса;
  • HH-102 – сохраняет высокую активность в течение долгого времени, содержит небольшое количество металла, что повышает устойчивость к загрязнению ванадием, повышает выход жидких углеводородов, с его помощью получают высокооктановый бензин;
  • НН-2 – нужен для переработки мазута, снижает содержание алкена, сохраняет высокую активность и стабильность, повышает выход жидких углеводородов;
  • НН-3 – для крекинга гудрона, с отличной устойчивостью к загрязнению тяжелыми металлами, повышает выход бензина;
  • НН-4 – для крекинга мазута с повышенным выходом дизельного топлива;
  • НН-5 – нужен для снижения алкена в бензине;
  • НН-6 – применяется для получения изоалкена.
Читайте также:  Нужны ли водительские права на мотовездеход Квадропарк

Термический крекинг

Так называют переработку углеводородов с нагреванием до температуры 500-540 градусов, что позволяет получить продукты меньшей молекулярной массы. Термический крекинг нефти также выдает на выходе непредельные углеводороды, которые не содержатся в природной нефти. Но проблема в том, что полученные соединения уж больно нестабильны. Поэтому данный вид расщепления редко используется. В основном его заменяют на более прогрессивные методы. Например, тот же каталитический.

Крекинг метана

Данный вид переработки применяется для получения ацетилена. И для этого используют электричество. Природный газ пропускают через электроды, параллельно нагревая печь до 1600 градусов. Но после выделения ацетилена необходимо проводить быстрое охлаждение.

Крекинг бутана

При термической обработке бутана на выходе можно получить несколько элементов. Во-первых, это бутен или бутилен. Он широко используется для синтеза бензина, а также в качестве топлива в составе смесей для газокислородной резки и сварки металлов. А во-вторых, получается свободный водород.

Бутан, получение, свойства, химические реакции

Бутан, получение, свойства, химические реакции.

Бутан, C4H10 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.

Бутан, формула, газ, характеристики:

Бутан – органическое вещество класса алканов , состоящий из четырех атомов углерода и десяти атомов водорода. Название происходит от корня «бут-» (французское название масляной кислоты – acide butyrique) и суффикса «-ан» (что означает принадлежность к алканам).

Химическая формула бутана C4H10. Имеет два изомера н-бутан и изобутан. В химии название «бутан» используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана.

Строение молекулы н-бутана:

Строение молекулы изобутана:

Бутан – бесцветный газ, без вкуса, со специфическим характерным запахом.

В природе содержится в природном газе , добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе . Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов ., в т.ч. сланцевой нефти.

Пожаро- и взрывоопасен.

Мало растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Малотоксичен, но оказывает вредное воздействие на человека – на нервную систему (отравление, рвота, возможен летальный исход), обладает наркотическими свойствами, может вызвать удушье и сердечную аритмию, вызывает дисфункцию лёгочно-дыхательного аппарата. Класс опасности четвертый.

Физические свойства бутана:

Наименование параметра: Значение:
Цвет без цвета
Запах специфический характерный запах
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (состояние вещества – жидкость, при 0 °C), кг/м 3 601,2
Плотность (состояние вещества – газ, при 0 °C), кг/м 3 2,672
Температура плавления н-бутана, °C -138,4
Температура плавления изобутана, °C -159,6
Температура кипения н-бутана, °C -0,5
Температура кипения изобутана, °C -11,7
Температура самовоспламенения, °C 372
Критическая температура*, °C 152,01
Критическое давление, МПа 3,797
Критический удельный объём, м 3 /кг 228
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 1,4 до 9,3
Удельная теплота сгорания, МДж/кг 45,8
Молярная масса, г/моль 58,12

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства бутана:

Бутан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства бутана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование бутана:
  1. 2. галогенирование бутана:

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы бутана, отрывая у них атом водорода, в результате этого образуется свободный бутил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома :

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование бутана проходит поэтапно – за один этап замещается не более одного атома водорода.

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование бутана:
  1. 4. окисление (горение) бутана:

При избытке кислорода:

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод сажа (в различном виде, в т.ч. в виде графена , фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование бутана:
  1. 6. сульфоокисление бутана:

Получение бутана. Химические реакции – уравнения получения бутана:

Так как бутан в достаточном количестве содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа , ПНГ и нефти при перегонке.

Бутан в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. гидрирования непредельных углеводородов , например, бутена:
  1. 2. восстановления галогеналканов:
  1. 3. взаимодействия галогеналканов с металлическим щелочным металлом , например, натрием (реакция Вюрца):

Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом .

  1. 4. щелочного плавления солей одноосновных органических кислот:
Читайте также:  Нужна ли доверенность на управление автомобилем в 2020 году пример доверенности ТС

Применение и использование бутана:

– в качестве топлива в смеси с пропаном в быту для приготовления пищи, транспортных средствах, в отопительных приборах и т.п.;

н-бутан используется как сырьё в химической и нефтехимической промышленности для получения бутилена, 1,3-бутадиена, компонентов бензинов с высоким октановым числом, для производства других химических веществ;

– в пищевой промышленности как пищевая добавка E943a и E943b (изобутан), последний используется в качестве пропеллента;

– изобутан используется как хладагент в холодильниках , холодильных камерах, холодильных установках и системах кондиционирования воздуха . Используется самостоятельно или в смеси с пропаном. В отличие от других хладагентов данная смесь и изобутан не разрушают озоновый слой.

Примечание: © Фото //www.pexels.com, //pixabay.com

газовая газ редуктор газовый баллон метан бутан этан бутан пропен цена купить реакции 1 4 50 3 какой кислород вещество авто температура кг воздух вода
заправка баллонов бутаном
сколько литров стоимость сгорание уравнение реакций давление смесь расход объем литр бутана
сжиженный бутан

Бутан крекинг

Члены гомологического ряда алканов имеют общие химические свойства. В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированной серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями – КМnО4 и т.п

Видеоопыт «Отношение метана к раствору перманганата калия и бромной воде»

Химическая устойчивость алканов объясняется высокой прочностью σ–связей С ─ С и С ─ Н, а также их неполярностью. Неполярные связи С ─ С и С ─ Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характерны радикальные реакции (реакции замещения), в результате которых получаются соединения, где атомы водорода замещены на другие атомы или группы атомов.

Алканы вступают в реакции, протекающие по свободно-радикальному (цепному) механизму и протекают обычно на свету или при нагревании. По этому механизму легче всего замещаются атомы водорода у третичных, затем вторичных и первичных атомов углерода. При хлорировании эта закономерность не соблюдается при T>400˚C.

Алканы относятся к углеводородам, в которых отсутствуют кратные связи. Из-за предельности алканов реакции присоединения для них нехарактерны.

Реакции замещения (разрыв связей С ─ Н)

1. Галогенирование (замещение атома водорода атомом галогена — F, Cl, Br с образованием галогеналкана).

Реакция галогенирования алканов протекает по радикальному цепному механизму, т.е. как цепь последовательных превращений с участием свободно-радикальных частиц.

Теорию цепных реакций разработал советский ученый, один из основоположников химической физики, академик Н.Н. Семенов (1896—1986), за что в 1956 г. был награжден Нобелевской премией.

Скорость реакции зависит от активности галогенов, которая уменьшается с увеличением радиуса атома.

Алканы очень активно реагируют с фтором, реакция алканов с его участием сопровождается взрывом и окислением до СF4.

Реакции хлорирования и бромирования протекают под действием света (фотохимическая цепная реакция) или при 300–400 о C.

Иодирование проходит обратимо, поэтому требуется окислитель для удаления НI из реакции.

Низшие алканы (СН4, С2Н6, С3Н8) можно прохлорировать полностью. В молекуле метана атомы хлора могут заместить от одного до четырех атомов водорода в зависимости от соотношения реагентов

(hv — формула кванта света)

Тривиальное название трихлорметана – хлороформ.

Механизм реакции

Реакция осуществляется в три стадии:

А) Инициирование (зарождение цепи) – гомолитическое расщепление молекулы Сl2 с образованием свободных радикалов хлора:

Свободные радикалы – это атомы или группы атомов с неспаренными электронами (•Сl, •Н, •СН3…)

Б) Развитие цепи (взаимодействие радикала хлора с молекулой алкана, метильного радикала с новой молекулой хлора и т.д.):

В) Обрыв цепи (происходит при соединении двух радикалов друг с другом):

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность связи С – Cl смещена к более электроотрицательному атому хлора, в результате этого на нем образуется частичный отрицательный заряд, а на атоме углерода – частичный положительный заряд.

На атоме углерода в метильной группе (-СН3) создаётся недостаток электронной плотности, поэтому он оттягивает на себя электронную плотность от соседних атомов водорода, в результате этого связи С – Н становятся менее прочными и атомы водорода легче замещаются на атомы хлора.

При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайшего к заместителю:

Алканы обесцвечивают раствор брома при нагревании, вступая в реакцию радикального замещения.

Видеоопыт «Взаимодействие алканов с бромом при нагревании»

2.Нитрование (замещение атома водорода нитрогруппой – NO2 с образованием нитроалканов R-NO2). Нитрующий реагент – разбавленная азотная кислота HNO3 (НО─NО2).

Нитрование разбавленной азотной кислотой при t = 140 0 С и при повышенном или нормальном давлении — реакция М.И.Коновалова.

В результате реакции образуется смесь изомерных нитросоединений. Наиболее легко замещаются атомы водорода у третичного атома углерода, труднее – у вторичного, наиболее трудно – у первичного:

3.Сульфирование (замещение атомов водорода сульфогруппой SO3Н с образованием алкансульфокислот RSO3Н). Сульфирующий реагент – серная кислота Н2SO4 (НО─SO3Н). Сульфирование алканов происходит при действии очень концентрированной Н2SO4 при небольшом нагревании.

Наиболее легко замещается атом водорода у третичного атома углерода:

Читайте также:  Как подключить через реле

Реакции окисления

Алканы – соединения с низкими степенями окисления углерода и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

При обычных условиях алканы устойчивы к действию сильных окислителей (КМnO4, К2Сr2О7).

1. Горение (окисление кислородом воздуха при высоких температурах)

А) Полное окисление (избыток О2)

При избытке кислорода происходит полное окисление алканов до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С–С и С–Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Низшие гомологи (метан, этан, пропан, бутан) образуют с воздухом взрывоопасные смеси, что необходимо учитывать при их использовании. С увеличением молекулярной массы алканы загораются труднее.

Видеоопыт «Взрыв смеси метана с кислородом»

Видеоопыт «Горение жидких алканов»

Видеоопыт «Горение твердых углеводородов (на примере парафина)»

Процесс горения углеводородов широко используется для получения энергии (в двигателях внутреннего сгорания, в тепловых электростанциях и т.п.).

Общий вид реакции горения алканов:

Б) Неполное окисление (недостаток О2)

При горении высших алканов ((n >>1)) при недостатке кислорода образуются продукты частичного окисления: угарный газ СО (степень окисления углерода +2), сажа (мелкодисперсный углерод, со степенью окисления 0).

Поэтому высшие алканы горят на воздухе коптящим пламенем, выделяя токсичный угарный газ, представляющий опасность для человека.

Горение метана при недостатке кислорода происходит по уравнениям:

Последняя реакция используется в промышленности для получения сажи из природного газа, содержащего 80-97% метана.

2. Каталитическое окисление

Частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–С и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана происходит разрыв связи (С2–С3) и получается две молекулы уксусной кислоты:

Этим способом в промышленности получают уксусную кислоту.

При мягком окислении метана кислородом воздуха в присутствии катализаторов могут быть получены метиловый спирт, формальдегид и муравьиная кислота.

Высшие алканы (n>25) под действием кислорода воздуха в жидкой фазе в присутствии солей марганца превращаются в смесь карбоновых кислот со средней длиной цепи С12–С18, которые используются для получения моющих средств и поверхностно-активных веществ.

Учебный фильм «Каталитическое окисление высших парафиновых углеводородов»

Термические превращения алканов (реакции разложения)

1. Крекинг (анг. сracking — расщепление) алканов является основой переработки нефти с целью получения продуктов меньшей молекулярной массы, которые используются в качестве моторных топлив, смазочных масел, а также сырья для химической и нефтехимической промышленности.

Для осуществления этого процесса используют два способа: термический крекинг (при нагревании без доступа воздуха) и каталитический крекинг (более умеренное нагревание в присутствии катализатора).

Термический крекинг — это разрыв связей С ─ С в молекулах алканов с длинными углеродными цепями, в результате которого образуются алканы и алкены с меньшим числом атомов углерода.

Термический крекинг (пиролиз) осуществляется при температуре 450 – 700 0 С:

Крекинг н-гексана (работа Литвишко Алексея, г. Самара)

Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре 500 0 С и атмосферном давлении. При этом с разрывом молекул происходит реакция изомеризации и дегидрирования.

Крекинг октана (работа Литвишко Алексея, г. Самара)

2.При нагревании метана или этана до температуры 1000 0 С начинается пиролиз – разложение на простые вещества:

Полученный этим способом углерод является достаточно чистым, в технике называется сажей и используется, например, при производстве автомобильных покрышек.

3. Конверсия метана с образованием синтез – газа (СО + Н2)

Важное значение имеет реакция взаимодействия метана с водяным паром, в результате которой образуется смесь оксида углерода (II) с водородом – «синтез-газ» (водяной газ, генераторный газ):

Эта реакция используется для получения водорода. Синтез-газ служит сырьем для получения различных углеводородов.

Реакции отщепления

1.Дегидрирование (отщепление водорода; происходит в результате разрыва связей С ─ Н; осуществляется в присутствии катализатора при повышенных температурах).

В ходе пропускания алканов над катализатором (Pt, Pd, Ni, А123, Сг23) при высокой температуре (400­ — 600°С) происходит отщепление молекулы водорода и образование алкена:

2. Если метан нагреть до более высокой температуры (1500 0 С) и быстро охладить, то происходит межмолекулярное дегидрирование и образуется этин (ацетилен):

3.Дегидроциклизация (ароматизация) — реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений.

Если основная цепь молекулы алкана содержит 5 (но не более) атомов углерода (н-пентан и его алкильные производные), то при температуре 300 0 С над Pt-катализатором атомы водорода отщепляются от концевых атомов углеродной цепи и образуется пятичленный цикл (циклопентан или его производные):

Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола м его производных:

Реакции перегруппировки (изомеризация)

1.Изомеризация (превращение химического соединения в его изомер):

Нормальные алканы под влиянием катализаторов и при нагревании способны превращаться в алканы с разветвленной цепью без изменения состава молекул. В этих случаях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов:

Эта реакция является важной для производства бензина, поскольку наличие в его составе разветвленных углеводородов повышает октановое число, т.е. качество топлива.

Видеоопыт «Установление качественного состава предельных углеводородов«

Ссылка на основную публикацию
Твитер — купольный или ленточный Плюсы и минусы этих решений; Barnsly Sound Blog
Как подключить твитеры в автомобиле Выбираем место установки В процессе установки новой акустической системы у владельца может возникнуть следующая задача...
Таблица уровня заряда аккумулятора автомобиля по напряжению
Как проверить заряд аккумулятора мультиметром Иногда требуется проверить аккумулятор автомобиля на заряд. Ну например стояла машина долгое время, клемма была...
Таблица цветов ВАЗ — названия оттенков, коды, описание
Ваз 2109 цвет амулет 1 Поскольку единственным правильным решением является подборка краски для конкретной машины, то данные таблицы можно использовать...
Телефон горячей линии РСА бесплатный номер
Горячая линия Российский Союз Автостраховщиков (РСА) телефон службы поддержки, бесплатный номер 8-80 Российский Союз Автостраховщиков (РСА) сплотил все организации, занимающиеся...
Adblock detector