Технология плавки алюминиевых сплавов

Плавим алюминий в домашних условиях технология и температура плавки

Алюминий часто используется для изготовления деталей. Иногда плавят кусочки алюминия, чтобы заделать дефект, делают отливки. Плавить можно обломки дюраля, ненужные радиодетали. В обзоре представлены способы, как в домашних условиях расплавить алюминий, что для этого потребуется. Специалисты поделятся опытом, расскажут, какие свойства легкого металла необходимо учитывать, чтобы плавить металл самостоятельно.

Характеристики алюминия

Чтобы правильно плавить металл, необходимо учитывать температуру плавки алюминия. Чистый сплав легко плавится уже при +660°С, а оксидная пленка только при +2300°С. Опасно самостоятельно плавить порошок, он способен воспламениться. Кусочки алюминия плавят сухими, вода в расплаве способна спровоцировать взрыв.

Технология плавления алюминия в домашних условиях

Суть плавления состоит из нескольких этапов:

  1. Подготовка лома. В качестве исходного сырья используют профиль из алюминия, проволоку (ее предварительно уминают пассатижами), отслужившие детали. Кусочки должны быть небольшими. Краску, вкрапления других металлов из них не достают, все это будет в составе шлака.
  2. Подбор емкости, в которой можно плавить алюминий. Подойдет прочная посудина из стали (температура плавления 1300°С) или чугунок (1100°С), используют готовые огнеупорные тигли.
  3. Подготовка формы для расплава. В домашних условиях их делают самостоятельно. Процедура изготовления представлена ниже.
  4. Плавление лома. Предварительно определяют источник тепла.
  5. Снятие шлака, изготовление отливки. Самый простой способ плавки – аккуратно слить жидкий алюминий в подготовленную емкость или форму, шлак остается на стенках плавильной посудины. Чтобы он не прилип, требуется быстро ее охладить.

В принципе, технология промышленного и кустарного литья ничем не отличается. Лом плавят до состояния текучести. После этого отделяют расплав от шлака, сливают в заготовленные формы. Их после охлаждения отливки разбивают. Важно определить, что в результате должно получиться из жидкого алюминия. Даже если плавить металл решили ради эксперимента, емкость или форму для литья все равно необходимо приготовить. Тогда можно будет рассмотреть получившийся слиток, проверить его на пористость, чистоту, однородность структуры.

Оборудование и способы плавки

Прежде, чем плавить алюминий, выбирают место и способ разогрева металла. Два часто используемых варианта:

  1. В гаражах или домовладениях плавят алюминий, сооружается плавильня, ее составляют из кирпича без использования связующего раствора. В качестве опоры удобен металлический каркас, в нем должно быть отверстие для нагнетания воздуха, для этого используют пылесос или фен. Самодельная печь обкладывается углем. Емкость для плавления с ломом помещают внутрь. Для лучшего сохранения тепла кирпичи сверху накрывают листом металла.
  2. В домашних условиях для разогрева небольшого количества лома пользуются:

— газовой плитой, можно плавить небольшое количество лома, но выход расплава будет невысокий.

Литье плавят в стальной посуде. Для повышения скорости нагрева используют конструкцию из двух емкостей, их вставляют одна в другую с зазором 1 см. Дно большой посудины перфорируется, оно выполняет функцию пламярассекателя. Когда есть газовая горелка, совмещают нижний нагрев с верхним. Плавить металл можно быстрее.

Дополнительное оборудование

Для небольших порций лома иногда используют жестяные банки. Но эта тара ненадежная, не исключено прогорание жести. Надежнее использовать керамический или металлический огнеупорный тигель для муфельных печей. Хороший вариант – обрезанный стакан огнетушителя. Для удобства делают желоб, по которому будет стекать расплавленный алюминий. При работе используют длинные щипцы. Понадобится ложка на длинной ручке для сбора шлака.

Как сделать форму для отливки

Перед тем, как расплавить алюминий, готовят болванку для отливки. Существует несколько способов заливки жидкого расплава. Чаще используют открытый и закрытый метод. О каждом стоит рассказать подробнее.

Открытая форма

Когда плавят алюминий по открытой методике, после плавления расплав выливают в подготовленную емкость, например, жестяную банку. Алюминиевую отливку вынимают из банки в горячем виде, когда горячий расплав немного схватится сверху. Достаточно несильно постучать по емкости. Если не нужен слиток заданной геометрии, расплавленный металл выливают на любую ровную огнеупорную поверхность, он хорошо держится, не растекается, внешне напоминает ртуть.

Закрытая форма

Сложные по геометрии отливки получают в специально приготовленных формах. Она должна соответствовать параметрам детали, обычно делается разъемной. Для изготовления формы используют деталь-макет, по которому делают отливку. В качестве формующего материала используют кремнезем, он хорошо трамбуется, его несложно найти. Кремнезем заменяют:

  • смесью речного песка и жидкого стекла;
  • смесь песка, цемента, вместо воды добавляют тормозную жидкость;
  • гипс, он удобен для сложных макетов.

Из гипса делают сплошные бесшовные формы, они одноразовые, их после застывания алюминия разбивают. Деталь-макет изготавливают из воска или пенопласта. Его помещают внутрь емкости, используемой для формы, затем заливают пустоты. Получаются ровные детали, не требующие дополнительной обработки. Когда используется гипс, его сушат в течение пары дней. Гипс боится влаги, разбухает. Он склонен к растрескиванию при высыхании. При контакте с парафином или пенопластом гипс сохраняет свою структуру, не образуется рытвин, раковин.

Читайте также:  Как подключить усилитель для сабвуфера Студия автозвука Электросила, Севастополь Студия автозвука

Полезные советы

  1. Расплав должен быть горячим, чтобы форма заполнялась равномерно. Его заливают, когда он приобретает консистенцию ртути.
  2. Сложные по конфигурации отливки делают быстро, стараются сразу залить формы, чтобы металл не успел схватиться, не образовалось перегородок и пустот.
  3. В гипс металл можно заливать по воску или пенопласту, от высокой температуры воск и пенопласт выгорают. Поверхность отливки будет ровной.
  4. Для охлаждения отливку не опускают в воду, литье потрескается.
  5. При расплавлении чистого алюминия применяется технология использования защитных флюсов, они предохраняют металл от окисления.

Необходимо соблюдать противопожарную безопасность, процесс литья связан с использованием открытого пламени. Важно использовать индивидуальные средства защиты: перчатки, очки.

ПЛАВКА ТОНКОСТЕННОГО ЛОМА С ЛАКОКРАСОЧНЫМИ ПОКРЫТИЯМИ ДЛЯ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА

Ибрагимов В.Э. 1 , Гарсиа Л.М. 2 , Бажин В.Ю. 3

1 Магистр кафедры металлургии, 2 Аспирантка кафедры АТПП, 3 Заведующий Кафедрой АТПП, профессор, Национальный минерально-сырьевой университет «Горный», г. Санкт-Петербург

ПЛАВКА ТОНКОСТЕННОГО ЛОМА С ЛАКОКРАСОЧНЫМИ ПОКРЫТИЯМИ ДЛЯ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА

В работе изучается проблема переработки загрязненных алюминиевых отходов доля которых неуклонно увеличивается в производстве вторичных сплавов. В лабораторных условиях проведены плавки, при которых шихта была сформирована из алюминиевого лома в виде тонкоизмельченных банок. Полученные отливки были проанализированы химическими и металлографическими методами, и выявлены основные показатели, влияющие на выход годного продукта. Изучен состав и содержание веществ, выделяющихся газообразных продуктов в ходе процесса плавления для оценки их влияния на окружающую среду. Научно обосновано необходимость выбора плавильного оборудования для переплавки загрязненных тонкостенных алюминиевых отходов.

Ключевые слова: алюминиевый сплав, тара для напитков, лакокрасочные покрытия, рециклинг алюминия.

Ibragimov V.E. 1 , Garcia M.L. 2 , Bazhin V.Y. 3

1 Master of the Department of Metallurgy, 2 Postgraduate student of the Department ATP, 3 Head of the Department ATPP, Professor, National Mineral Resources University (Mining University), Saint Petersburg

MELTING OF THIN WALLED PAINT SCRAP COATINGS FOR ALUMINUM ALLOY PRODUCTION

Abstract

In this paper the problem of contaminated aluminum waste recycling the percentage of which steadily increases in the production of secondary alloys are investigated. In laboratory furnaces had meltings in which the charge was fully formed from the aluminum scrap in the form of finely divided aluminum cans. The resulting casting of aluminum alloy were analyzed by chemical and metallographic methods and carried out additional experiments to identify the main factors influencing the yield of the product metal. The composition and content of substances, gaseous products evolved during the melting process to assess their negative impact on the environment. Scientifically substantiated need for the selection of equipment for melting contaminated aluminum scrap thin.

Keywords: aluminium alloy, containers for beverages, coatings, recycling aluminum.

Введение

В настоящее время во всех странах увеличивается доля производства вторичных алюминиевых сплавов, из-за роста оборота упаковочной тары и мелких металлических отходов. К такому типу алюминиевых отходов относят не только алюминиевые банки из-под напитков, но также металлическую посуду, оконные рамы, крашенные автодетали, которые используются для повторного производства (рециклинга) аналогичных изделий [1]. Значительная доля отходов приходится и на скрап, загрязненный красками, лаками и различными органическими покрытиями [2].

Часть предприятий, занимающихся рециклингом алюминия плавит алюминиевые банки, и другие виды ломов с лакокрасочными покрытиями в пламенных отражательных печах, не принимая во внимание специфику переплава данной шихты, которая должна быть основана на современных экономических и экологических особенностях производства [3].

Плавка в отражательных печах имеет ряд существенных недостатков, в которых, в отличие от роторных печей, невозможно автоматизировать процесс, и управлять атмосферой печи, что необходимо при переплаве ломов с лакокрасочными и другими органическими покрытиями.

Эффективность плавки в отражательных камерных печах достигается только загрузкой шихты в слой расплава – «болото» [3], что исключает возможность правильной подготовки шихтовых компонентов с лакокрасочными покрытиями, в первую очередь из-за необходимости постоянного поддержания температуры в печи в интервале 700–800 ˚С. Применение такой технологии, даже при организации многоступенчатого рафинирования и дегазации расплава, неизбежно приводит к большому количеству неметаллических и оксидных включений в отливках.

Если материал, загружаемый в печь, сильно загрязнен оксидами и органическими компонентами (красками и лаками), необходимо создать условия для удаления покрытия и предотвратить выгорание органических веществ вместе с алюминием (эффект угара) [4]. При этом топочная система печи должна обеспечивать достаточное количество избыточного воздуха для выгорания органических компонентов, которые воспламеняются при контакте с горячим пламенем горелки. Наиболее подходящим оборудованием для решения подобных задач являются роторные барабанные печи с возможностью регулирования атмосферы печи.

Целью работы являлось получение однородного материала из алюминиевого сплава заданного химического состава после вторичной переработки и плавки алюминиевой тары от напитков для дальнейшего производства алюминиевых полуфабрикатов.

Результаты экспериментов являются основанием для перевода переплавки вторичного сырья с лакокрасочными покрытиями с подовых отражательных печей на более технологичные плавильные мощности ‒ барабанные роторные наклонные печи (РНП).

Читайте также:  Как сделать станок лазерной резки металла своими рукам – выбор мощности и стоимость материалов

Хроматографический и масс-спектрометрический анализ газов, выделяющийся из алюминиевых емкостей для напитков

Для проведения анализа состава выделяющихся газов в виде химических соединений из загрязненного алюминиевого лома проводили выдержку порции 5 г при температуре 200 о С и 650 о С. Пробы измельченного и дробленного алюминиевого лома взвешивали и вставляли в стеклянную капиллярную трубку, которую помещали в печь при заданной температуре.

Первый забор выделившихся компонентов проводили в течение 20 минут при закачке и вытяжке литра гелия через трубку. Выделившиеся вещества собирали в сорбционной трубке заполненной комбинированным угольным фильтром 300 из трех сорбентов, размещенных последовательно (угольный фильтр и сито SII). Полученные сорбционные трубки обрабатывали методом термической десорбции в агрегате Tekmar 6000. Определение фазового составов образцов на автоматизированном рентгеновском дифрактометре Shimadzu XRD-6000, с использованием поисковой системы рентгенофазовой идентификации материалов. Отходящие газы анализировали с помощью масс-спектрометра Pfieffer Vacuum Termostar GSD301T3 при интерпретации измеренных масс спектров (рис. 1).

Рис. 1. Масс-спектры выделившихся соединений при 300°C

Рис. 2. Данные термогравиметрического анализа

Тестирование плавления и выход годного металла

В ходе экспериментов проведены три плавки из алюминиевого лома в виде тонко измельченных банок Полученные отливки из сплава были проанализированы химическими и металлографическими методами.

Первоначально взвешивали шихтовые материалы, содержащие 1,5 кг мелкоизмельченных отходов алюминиевой упаковки для напитков для каждой отливки (№1, 2 и 3). Для качественного определения количества измельченных банок использовали весы со шкалой от 5 г до 1000 г, и погрешностью в 0,1 г. Шихту загружали в графитовый тигель и помещали в камеру триплекс плавильного комплекса Горного Университета. Плавку проводили при температуре 780 о С и, после расплавления отходов добавляли флюс (20 г). Далее расплав перемешивали, чтобы взять пробу с поверхности металла. Сплав отливался в круглую форму, и после охлаждения взвешивался для расчета выхода годного металла по следующей формуле:

Выход годного металла после плавок изменялся от 75% до 83% (плавка №1 – 75,5%, плавка №2 – 79,2% и отливка №3 – 83,1%).

При переработке тары для напитков в промышленном масштабе с целью достижения более высокого уровня выхода годного металла, более подходящим способом подготовки загрузки является использование операции дробления банок, с последующим прессованием лома в «брикеты» [6]. Наряду с прессованием, для повышения выхода годного используется способ загрузки лома в уже расплавленный металл – «болото» [7].

Исходя из вышесказанного, на аналогичном оборудовании были проведены дополнительные эксперименты по изучению влияния высоты слоя металла на выход годного (табл.1 и рис. 3). Образцы полученного алюминиевого сплава отбирали по 100 г в каждом опыте, и слой алюминия в тигле повышался с каждой плавкой и определяли выход годной продукции.

Таблица 1 – Показатели эксперимента по изучению влияния высоты слоя металла на выход годного

Из полученных результатов экспериментов можно сделать вывод, что с увеличением слоя металла на подине печи увеличивается выход годного, но при этом увеличивается количество шлака, что приводит к потере металла.

Рис. 3. Влияние слоя металла на выход годного

На практике, целесообразно плавить мелкие загрязненные лома, а также стружку в индукционных печах с заданным слоем металла. При заданном температурном режиме, именно в этих печах можно добиться более высокого выхода годного металла.

Спектрометрический анализ образцов после плавления

Для определения химического состава образцов №1, 2 и 3 после плавки и литья алюминия в формы, отбирались требуемые для спектрометрического анализа аншлифы. Определение элементного и фазового составов образцов расплава проводили на дифрактометре ДИФРЕЙ-402 (г. Санкт-Петербург).

В результате выявлено более 20 элементов. Результаты анализа отдельных образцов отливок №1, 2 и 3 представлены в следующих таблицах.

Все образцы близки по составу к сплаву системы Al-Fe-Mn (по американской классификации это сплавы EN AW 3103 или EN AW 3003) с содержанием отдельных элементов Mn 0,9- 1,5% (таблица 2).

Таблица 2 – Процентное содержание элементов в отливках

Содержание основных примесей находится в пределах, масс. %: 0,34-0,90 по Fe, 0,32=0,34 по Si и 0,02-0,2 по Zn. Содержание Al изменяется в интервале 96-98%

Металлографическое исследование образцов

Полученные алюминиевые отливки каждой отдельной партии, размещали в круглые формы, разрезали по оси в центральной части. Далее темплеты полировались с последующим травлением раствором 10% фосфорной кислоты в течение 5 мин. Структурное исследование осуществлялось методами растровой электронной микроскопии и рентгеновского микроанализа на растровом электронном микроскопе JSM-6460 LV (JEOL, Япония) с аналитической приставкой INCA (Великобритания).

Рис. 4. Микроструктура: а – отливка №1, б – отливка № 2, в – отливка № 3

Видно, что микроструктура отливки №1 принципиально отличается от других двух отливок, т.к. содержит повышенное количество железа, которое проявляется при помощи металлографического анализа в наличии большого числа грубых игл интерметаллических фаз типа FeSiAl5 с размером 30-70 мкм (рис. 4, а). Микроструктура отливки №2 (рис. 4, б), также как и отливки №3 (рис. 4, в), имеет разветвленные интерметаллические фазы типа AlFe(Si)Mn, которые называются обычно «китайский шрифт» размером 80-200 мкм. В отливке №3 проявляется дендридная структура более очевидно, это объясняется тем, что литье проводили в жидко-твердом состоянии

Читайте также:  Ремонт АКПП Дэу Нубира (Daewoo Nubira)

Микроструктура всех отливок имеет высокий уровень местной междендритной пористости с оксидными пленами различных форм.

Заключение

При температурах от 200-350 о С, с поверхности алюминия выделяется значительное количество опасных химических соединений. Термогравиметрические и масс результаты исследования указывают на то, что потери летучих соединений составляют 3-4% от потерь алюминия.

Все исследуемые отливки близки по составу к сплаву EN AW 3103 или EN AW 3003 с содержанием Mn 1,1-1,5% и Al 96,3-97,9%.

Полученные результаты плавки для отдельных отливок позволяют предположить, что выход годного металла изменяется в пределах 70-80%.

Весь объем полученных отливок является компактным и однородным, без усадки, пор и следов переплавки отходов. В микроструктуре всех образцов можно увидеть появление карбидов, из-за наличия пластиковых отходов и красителей, при их реакции с алюминием. С увеличением количества оксидных пленок увеличивается междендритная пористость.

Для повышения качества отливок необходимо проводить рафинирование и дегазацию, также добавить операцию фильтрации через керамический фильтр, а так же важно технологически правильно обжигать шихту перед плавлением, что не возможно в отражательных подовых, но осуществимо в роторных печах с регулированием атмосферы печи.

Печи для плавки алюминия: классификация

Ниже представлена классификация печей для плавки алюминия с точки зрения их конструкции. На рисунке – обзор плавильных печей, которые применяют в алюминиевой промышленности.

Классификация плавильных печей для алюминия

Рисунок – Классификация плавильных печей для алюминия

  • 1.00 – отражательная печь, стационарная
  • 1.11 – печь с загрузкой шихты сверху
  • 1.12 – круглая печь
  • 1.13 – печь с загрузочным колодцем
  • 1.14 – двухкамерная печь
  • 1.15 – печь с сухим подом
  • 1.16 – печь скоростного плавления
  • 1.17 – шахтная печь
  • 1.21 – отражательная печь, наклоняемая
  • 1.22 – наклоняемая цилиндрическая печь
  • 1.23 – наклоняемая овальная печь
  • 2.00 – тигельная печь
  • 2.11 – газовая тигельная печь
  • 2.12 – электрическая тигельная печь сопротивления
  • 2.21 – тигельная индукционная печь
  • 2.22 – канальная индукционная печь
  • 3.00 – роторная печь
  • 3.10 – наклоняемая роторная печь

Три класса плавильных печей для алюминия

Чаще всего в производстве вторичного алюминия применяют так называемые отражательные (подовые) печи. Этот тип печей для плавки алюминия (1.00) имеет много модификаций. Все эти модификации, так или иначе, приспосабливают классическую отражательную печь под особые условия работы и специальную шихту.

Популярными являются тигельные печи (2.00), особенно, на малых производствах.

Производители вторичного алюминия широко применяют в качестве плавильных печей роторные печи (3.00), особенно для переработки лома с высокой удельной поверхностью, например, алюминиевую стружку, а также сильно загрязненный алюминиевый лом.

Семейное древо плавильных печей, которое показано на рисунке, относится именно к производству вторичного алюминия. Некоторые технологии плавления алюминия имеют очень ограниченное и специальное применение.

Кроме того, производители вторичного оборудования применяют различное оборудование в зависимости от назначения своей продукции и типа алюминиевого лома, который они применяют.

Печи для литейного вторичного алюминия

Производителей вторичного алюминия обычно подразделяют на две категории. К первой категории относят производства, которые выпускают в основном литейные сплавы для производителей алюминиевых отливок, а также алюминий для раскисления стали. Сырьем для этих производителей является «старый» лом и производственные отходы литейных производств. По-английски их называют «refiners». Эти производства кроме введения легирующих элементов для доводки заданного сплава применяют оборудование для очистки алюминиевого расплава и удаления нежелательных химических элементов и примесей.

Роторные плавильные печи применяют именно эти переработчики алюминиевого лома.

Литейные предприятия, которые изготавливают алюминиевые отливки из вторичного литейного алюминия, широко применяют тигельные печи – газовые и электрические, индукционные и сопротивления, как для плавки и выдержки алюминия, так и для разливки алюминиевого расплава в литейные формы.

Печи для деформируемого вторичного алюминия

Вторая категория производителей вторичного алюминия включает производства для получения деформируемых алюминиевых сплавов. Они применяют в качестве шихты чистый и отсортированный лом деформируемых алюминиевых сплавов. Продукция этих производителей вторичного алюминия – слябы и слитки для прокатки и экструзии (прессования). Их по-английски называют «remelters». К ним относятся и производства, которые являются подразделениями заводов по прокатке и прессованию алюминиевой продукции и которые перерабатывают в основном собственные технологические отходы.

Эти плавильщики-литейщики алюминиевого лома применяют в основном отражательные (подовые) печи – стационарные и наклоняемые. Различные конструкции этих печей отвечают требованиям конкретных производств: по энергетической эффективности, по чистоте металла, по производительности и т. д.

В таблице представлен обзор применения различных типов печей в алюминиевой промышленности. Индексы типов печей – по схеме классификации печей на рисунке.

Таблица – Применение печей (плавильных, для выдержки, раздаточных) в алюминиевой промышленности

Обозначения: 0 – не применяется, 1 – применяется в отдельных случаях, 2 – часто применяется, 3 – стандартная технология, 4 – ключевая технология

Источник: Ch. Schmitz, Handbook of Aluminium Recycling, Vulkan-Verlag GmbH, 2006.

Подпишитесь на новые публикации!

Ссылка на основную публикацию
Технические характеристики манометров давления топлива (масла) для измерения устройство и типы
Замер давления топлива ВАЗ, проверка регулятора давления, схема, датчики, манометр Вступление Топливная система автомобиля довольно сложный и капризный механизм. При...
Тест-драйв Suzuki SX4 седан; компактная забота Автосалоны Волгограда
Suzuki SX4 Sedan - характеристики и цена, фотографии и обзор Седан Сузуки SX4 (2007-2013) перечень технических характеристик и цены. Обзор...
Тест-драйв Андрея Крутько
Онлайн-показ спектакля «Anti gone » « АРТ Корпорейшн «АРТ Корпорейшн» продолжает делиться спектаклями и открывает доступ к записи премьерного показа...
Технические характеристики мотора 2106
Технические характеристики ВАЗ 2106 ВАЗ 2106 - пятиместный легковой автомобиль с передним расположением двигателя и задними ведущими колесами. Кузов -...
Adblock detector